Higher-Order Termination: From Kruskal to Computability
نویسندگان
چکیده
ion:
منابع مشابه
Higher-Order Path Orders Based on Computability
Simply-typed term rewriting systems (STRSs) are an extension of term rewriting systems. STRSs can be naturally handle higher order functions, which are widely used in existing functional programming languages. In this paper we design recursive and lexicographic path orders, which can efficiently prove the termination of STRSs. Moreover we discuss an application to the dependency pair and the ar...
متن کامل(HO)RPO Revisited
The notion of computability closure has been introduced for proving the termination of the combination of higher-order rewriting and beta-reduction. It is also used for strengthening the higher-order recursive path ordering. In the present paper, we study in more details the relations between the computability closure and the (higher-order) recursive path ordering. We show that the first-order ...
متن کاملThe Computability Path Ordering: The End of a Quest
In this paper, we first briefly survey automated termination proof methods for higher-order calculi. We then concentrate on the higher-order recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture the essence of computability arguments à la Tait and Girard, therefore explaining the name of the improved ...
متن کاملStatic Dependency Pair Method Based on Strong Computability for Higher-Order Rewrite Systems
Higher-order rewrite systems (HRSs) and simply-typed term rewriting systems (STRSs) are computational models of functional programs. We recently proposed an extremely powerful method, the static dependency pair method, which is based on the notion of strong computability, in order to prove termination in STRSs. In this paper, we extend the method to HRSs. Since HRSs include λ-abstraction but ST...
متن کاملArgument filterings and usable rules in higher-order rewrite systems
The static dependency pair method is a method for proving the termination of higher-order rewrite systems à la Nipkow. It combines the dependency pair method introduced for first-order rewrite systems with the notion of strong computability introduced for typed λ-calculi. Argument filterings and usable rules are two important methods of the dependency pair framework used by current state-of-the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006